SHORT PAPER

1,3-Dipolar cycloadditions of arylcarbonitrile oxides and diaryl nitrilimines with some 2-arylmethylene-1,3-indanediones; regiochemistry of the reactions[†] Sarra Boudriga^a, Mohiedinne Askri^a, Rafik Gharbi^b, Mohamed Rammah^{a*} and Kabula Ciamala^c

^a Laboratoire de Physico-Chimie des Interfaces, Faculté des Sciences et Techniques, Route de Kairouan, 5000 Monastir, Tunisia

^b Laboratoire de Synthèse Organique et des Substances Naturelles, Faculté des Sciences et Techniques, Route de Kairouan, 5000 Monastir, Tunisia

^c Laboratoire de Chimie des Matériaux et Interfaces, UFR Sciences et Techniques, 16 Route de Gray, F-25030 Besançon, France

Ring-closure reaction affording spiroisoxazolines and spiropyrazolines *via* a 1,3-dipolar cycloaddition between the title compounds, occurs with high regioselectivity.

Keywords: 1,3-dipolar cycloadditions, arylcarbonitrile oxides, diaryl nitrilimines, 2-arylmethylene-1,3-indanediones

As part of our research¹ into the use of 1,3-dipolar cycloaddition reactions to synthesize five-membered heterocycles, we present here the reactions of aryl carbonitrile oxides 1 and diaryl nitrilimines 2 (generated *in situ* from the corresponding hydroximoyl chlorides and *C*-aryl-*N*-phenylhydrazidoyl chlorides respectively) with some 2-arylmethylene-1,3-indanediones 3 (Scheme 1 and Table 1). Since the dipolarophilic site is exocyclic, we obtained the spirocyclic adducts 4 and 5 (Scheme 1 and Tables 2, 3).

Scheme 1 Formation of spiro-indanediones 4,5.

Cycloadditions of arylcarbonitrile oxides 1: These 1,3-dipoles yielded regioselectively (100%) to the spiro-isoxazolines **4** whatever the nature of the substituents R and R' (Table 1). Yields were moderate (31%) to good (79%).

The ¹H NMR data (δ 4-H = 5.22–5.40 ppm) enabled us to determine the structure of regioisomer **4**, spiro[3,4-diaryl-2-isoxazoline-5:2'-1',3'-indanedione], since, in the case of the reverse regioisomer (**4**'), we should observe a chemical shift value higher than 6 ppm for the 5-H proton² (Table 1). The ¹³C NMR data confirmed this result; the chemical shifts of the spirocarbon atoms (C-5:2') were found between 87.60 and 89.50 ppm, because of the deshielding effect of the oxygen atom.

Cycloadditions of Diaryl nitrilimines 2: These 1,3-dipoles led regioselectively (100%) to spiro-pyrazolines **5** irrespective of the substituents R and R' (Table 2). Yields were good (50%) to very good (90%).

The ¹H NMR data did not allow us to distinguish between the two regioisomeric structures **5** or **5'** since chemical shifts of H-5 (in **5**) or H-4 (**5'**) varied between 5.07 and 5.24 ppm. Nor did comparison with the chemical shift values of analogous protons of compounds **6** and **6'** (Fig. 1), obtained by 1,3dipolar cycloaddition reaction of diphenyl nitrilimine with benzylideneacetone³, help us to ascertain the regiochemistry.

Fig. 1 Chemical shifts of 4-H and 5-H protons of 6 and 6'

On the other hand, the ${}^{13}C$ NMR data were unambiguous: the chemical shift values of spiro-carbon atoms (79.60–80.60 ppm) were in good agreement with structure **5**. In the case of the alternative structure (**5**'), these values should be below 60 ppm.⁴

Elemental analyses and the remaining spectral data (IR, ¹H, ¹³C NMR) were in good agreement with the proposed structures.

In summary: when aryl nitrile oxides or diaryl nitrile imines reacted with activated dipolarophilic alkenes, the predominant or unique resulting cycloadducts bore the substituent of the initial alkene at the 5-position of the isoxazoline or pyrazoline ring. These results are in good agreement with previous work.^{1,2}

^{*} To receive any correspondence. E-mail : mohamed.rammah@voila.fr

[†] This is a Short Paper, there is therefore no corresponding material in *J Chem. Research (M).*

Compound	R	M.p. /°C	Yield /%	IR/cm ⁻¹			¹ Η NMR/δ ppm		
				$v_{C=0}$	$\nu_{C=C \ arom}$	$v_{C=C \text{ olefinic}}$			
3e	н	153	86	1725,1680	1585	1610	7.87 (s, H vinyl); 7.50–8.63 (m. 9 arom. H)		
3f	Me	152	70	1720,1680	1590	1610	2.43 (s, 3H, CH ₃); 7.88 (s, H vinyl); 7.22–8.53 (m, 8 arom. H)		
3g	OMe	157	75	1720,1680	1585	1610	3.98 (s, 3H, OCH ₃); 7.97 (s, H vinyl); 7.03-8.78 (m, 8 arom. H)		
3h	NO_2	233	70	1735,1690	1590	1610	8.66 (s, H vinyl); 7.80–8.57 (m, 8 arom. H)		

Table 2 Physical and spectroscopic data of the spiro[3,4-diaryl-2-isoxazoline-5:2'-1',3'-indanediones] 4

Compound	R	R'	M.p. ∕°C	Yield	No. o	IR/cm ⁻¹	No. o	¹ H NMR/ ¹³ C NMR/δ ppm
			70	//0	*C=0	VC=N	VC=Carom	
4ae	Н	Н	234	75	1753, 1718	1605	1594	5.31 (s, 1H, H ⁴); 6.72–8.30 (m, 14 arom. H) 55.25 (OMe); 63.30 (C ⁴); 88.95 (C ^{5:2'}); 192.95 (C=O); 196.00 (C=O)
4be	Н	Me	250	79	1737, 1705	1608	1585	2.24 (s, 3H, Me); 5.27 (s, 1H, H ⁴); 6.80–8.65 (m, 13 arom. H) 21.15 (Me); 62.70 (C ⁴); 88.05 (C ^{5.2}); 192.15 (C=O); 195.20 (C=O)
4ce	Н	OMe	240	62	1739, 1706	1606	1585	3.76 (s, 3H, OMe); 5.26 (s, 1H, H ⁴); 6.76–8.10 (m, 13 arom. H) 55.25 (OMe); 63.30 (C ⁴); 88.95 (C ^{5:2'}); 192.95 (C=O); 196.00 (C=O)
4de	Н	NO_2	232	32	1759, 1724	1610	1574	5.39 (s, 1H, H ⁴); 6.98–8.12 (m, 13 arom. H) 62.20 (C ⁴); 89.40 (C ^{5.2'}); 192.05 (C=O); 195.15 (C=O)
4af	Me	Н	228	70	1755, 1720	1608	1591	2.24 (s, 3H, Me); 5.26 (s, 1H, H ⁴); 6.84–8.78 (m, 13 arom. H) 21.20 (Me); 62.20 (C ⁴); 88.95 (C ^{5.2}); 192.35 (C=O); 195.10 (C=O)
4bf	Me	Me	263	63	1755, 1726	1608	1597	2.21 (s, 3H, Me); 2.23 (s, 3H, Me); 5.23 (s, 1H, H ⁴); 6.82–8.20 (m, 12 arom. H) 21.15 (Me); 62.30 (C ⁴); 88.95 (C ^{5.2}); 192.30 (C=O); 195.20 (C=O)
4cf	Me	OMe	234	65	1754, 1716	1608	1596	2.24 (s, 3H, Me); 3.77 (s, 3H, OMe); 5.22 (s, 1H, H ⁴); 6.65–8.09 (m, 13 arom. H) 21.15 (Me); 55.25 (OMe); 63.05 (C ⁴); 88.95 (C ^{5.2'}); 192.00 (C=O); 195.00 (C=O).
4df	Me	NO ₂	228	45	1754, 1717	1600	1595	2.28 (s, 3H, Me); 5.29 (s, 1H, H ⁴); 6.89–8.20 (m, 12 arom. H) 21.15 (Me); 62.05 (C ⁴); 89.45 (C ^{5.2}); 192.15 (C=O); 195.30 (C=O)
4ag	OMe	Н	240	80	1711, 1679	1590	1595	3.76 (s, 3H, OMe); 5.36 (s, 1H, H ⁴); 6.79–8.00 (m, 13 arom. H) 55.15 (OMe); 61.20 (C ⁴); 87.85 (C ^{5:2'}); 192.25 (C=O); 195.00 (C=O)
4bg	OMe	Me	222	70	1735, 1723	1610	1595	2.24 (s, 3H, Me); 3.76 (s, 3H, OMe); 5.34 (s, 1H, H ⁴); 6.75–8.07 (m, 12 arom. H) 21.15 (Me); 55.10 (OMe); 61.05 (C ⁴); 89.05 (C ^{5:2'}); 192.20 (C=O); 195.25 (C=O)
4cg	OMe	OMe	174	75	1752, 1723	1604	1599	3.71 (s, 3H, OMe); 3.76 (s, 3H, OMe); 5.22 (s, 1H, H ⁴); 6.65–8.09 (m, 12 arom. H) 55.10 (OMe); 55.25 (OMe); 62.85 (C ⁴); 89.05 (C ^{5.2'}); 193.10 (C=O); 196.10 (C=O)
4dg	OMe	NO_2	231	55	1757, 1726	1610	1589	3.78 (s, 3H, OMe); 5.30 (s, 1H, H ⁴); 6.78–8.19 (m, 12 arom. H) 55.15 (OMe); 61.80 (C ⁴); 89.45 (C ^{5:2'}); 192.25 (C=O); 195.35 (C=O)
4ah	NO_2	Н	200	52	1752, 1714	1600	1585	5.38 (s, 1H, H ⁴); 7.22–8.15 (m, 13 arom. H) 61.20 (C ⁴); 87.85 (C ^{5.2'}); 192.25 (C=O); 195.00 (C=O).
4bh	NO_2	Me	219	31	1754, 1719	1600	1591	2.25 (s, 3H, Me); 5.36 (s, 1H, H ⁴); 7.23–8.10 (m, 12 arom. H) 21.15 (Me); 60.70 (C ⁴); 87.70 (C ^{5:2'}); 192.15 (C=O); 195.10 (C=O)
4ch	NO_2	OMe	225	64	1755, 1720	1608	1591	3.78 (s, 3H, OMe); 5.34 (s, 1H, H ⁴); 6.79–8.15 (m, 12 arom. H) 55.35 (OMe); 61.45 (C ⁴); 87.65 (C ^{5:2'}); 192.20 (C=O); 195.20 (C=O)
4dh	NO ₂	NO ₂	180	43	1753, 1716	1604	1594	5.40 (s, 1H, H ⁴); 7.20–8.19 (m, 12 arom. H) 60.40 (C ⁴); 88.20 (C ^{5.2} '); 192.15 (C=O); 195.10 (C=O)

Experimental

Melting points were determined on a Kofler bank. IR spectra were recorded from KBr dispersions $(5^{\circ/}_{\circ o})$ with a Perkin-Elmer197 spectrometer; only structurally significant bands (v) are reported. NMR spectra were recorded in CDCl₃ with a Bruker-Spectrospin AC 250 spectrometer operating at 250 MHz for ¹H and 62.9 MHz for ¹³C (compounds **3** and products **5**). Elemental analysis were performed by the Centre de Microanalyses of Claude Bernard University (Lyon I, Vernaison); the results are listed in Table 3.

Aryl nitrile oxides and Diaryl nitrilimines were generated following the methods of previous literature reports. $^{\rm 1.5.6}$

Preparation of 2-arylmethylene-1,3-indanediones (3): These compounds were obtained by an adaptation of a published procedure:⁷ General procedure: A mixture of 1,3-indanedione (20 mmol) and the arylaldehyde (20 mmol) in toluene (50 ml) was refluxed during 24 hours with a catalytic amount of *p*-toluenesulfonic acid (Dean-Stark apparatus). The reaction mixture was poured into water (100ml) and extracted with ether (3×50ml). The organic phase was washed with water (3×50ml) and dried over anhydrous Na₂SO₄. The solvents were evaporated off and the residue dissolved and crystallised from an ethanol : toluene mixture (50 : 50, 50 ml) (Table 1). Cycloaddition reactions of aryl nitrile oxides (1) with 2-arylmethylene-1,3-indanediones (3). Spiro-compounds 4. General procedure: The enedione 3 (5 mmol) was dissolved in 20 ml of toluene in a 100 ml Erlenmeyer flask. The α -chlorooxime of the appropriate arylaldehyde (precursor to the 1,3-dipole 1)^{2.5} (5 mmol) was added, and to the magnetically stirred mixture anhydrous triethylamine (2 ml) was added dropwise. After refluxing for 24 h the precipitated triethylamine hydrochloride was filtered off and the solvent evaporated. The residue was dissolved in a toluene : ethanol (50 : 50) mixture from which the product 4 crystallised. For physical and spectroscopic properties see Table 2. Analytical data are listed in Table 4.

Cycloaddition reactions of diaryl nitrile imines **2** with 2-arylmethylene-1,3-indanediones (**3**). Spiro-compounds **5**. General procedure: The enedione **3** (5 mmol) was dissolved in 20 ml of toluene in a 100 ml Erlenmeyer flask. Then the α -chlorophenylhydrazone of the arylaldehyde (precursor to the 1,3-dipole **2**)^{1,6} (5 mmol) was added, and to the magnetically stirred mixture anhydrous triethylamine (2 ml) was added dropwise. After refluxing for 24 h the precipitated triethylamine hydrochloride was filtered off and the solvent evaporated. The residue was dissolved in a toluene : ethanol (50 : 50) mixture from which the product **4** crystallised. For physical and spectroscopic properties see Table 3. Analytical data are listed in Table 4.

Table 3	Physical and spectroscopic data of the spiro[1,3,4-triaryl-2-pyrazoline-5	:2'-1',3'-indanediones] 5

Compound	R	R'	M.p.	Tield		IR/cm ⁻¹		¹ Η NMR/ ¹³ C NMR/δ ppm
			/-0	/70	v _{C=0}	VC=N	VC=Carom	
5ae	Н	Н	136	86	1754, 1715	1595	1591	5.11 (s, 1H, H ⁴); 6.00–8.04 (m, 19 arom. H) 64.00 (C ⁴); 80.50 (C ^{5:2}); 194.50 (C=O); 197.50 (C=O).
5be	Н	Me	142	70	1754, 1710	1595	1585	2.29 (s, 3H, Me); 5.16 (s, 1H, H ⁴); 6.60–8.10 (m, 18 arom. H) 21.10 (Me); 64.10 (C ⁴); 80.50 (C ^{5.2'}); 194.60 (C=O); 197.60 (C=O)
5ce	Н	OMe	162	80	1745, 1710	1665	1595	3.77 (s, 3H, OMe); 5.14 (s, 1H, H ⁴); 6.74–8.10 (m, 18 arom. H) 55.00 (OMe); 64.30 (C ⁴); 80.30 (C ^{5:2} '); 194.50 (C=O); 197.60 (C=O)
5de	Н	NO_2	216	84	1745, 1710	1590	1574	5.17 (s, 1H, H ⁴); 6.69–8.11 (m, 18 arom. H) 63.50 (C ⁴); 80.60 (C ^{5.2}); 193.60 (C=O); 196.60 (C=O)
5af	Me	Н	146	85	1745, 1715	1595	1591	2.22 (s, 3H, Me); 5.13 (s, 1H, H ⁴); 6.74–8.16 (m, 18 arom. H) 21.00 (Me); 63.60 (C ⁴); 80.30 (C ^{5.2'}); 194.30 (C=O); 197.40 (C=O)
5bf	Me	Me	196	60	1745, 1715	1597	1592	2.13 (s, 3H, Me); 2.19 (s, 3H, Me); 5.07 (s, 1H, H ⁴); 6.69–7.83 (m, 17 arom. H) 21.20 (Me); 21.40 (Me); 64.20 (C ⁴); 80.60 (C ^{5:2} '); 194.70 (C=O); 197.70 (C=O)
5cf	Me	OMe	162	68	1745, 1715	1596	1592	2.17 (s, 3H, Me); 3.69 (s, 3H, OMe); 5.07 (s, 1H, H ⁴); 6.67–7.90 (m, 18 arom. H) 21.20 (Me); 55.30 (OMe); 64.30 (C ⁴); 80.50 (C ^{5.2'}); 194.80 (C=O); 197.90 (C=O)
5df	Me	NO ₂	256	80	1750, 1715	1595	1595	2.24 (s, 3H, Me); 5.15 (s, 1H, H ⁴); 6.68–8.12 (m, 17 arom. H) 21.00 (Me); 63.20 (C ⁴); 80.50 (C ^{5,2}); 193.60 (C=O); 196.70 (C=O)
5ag	OMe	Н	196	90	1755, 1720	1600	1565	3.71 (s, 3H, OMe); 5.14 (s, 1H, H ⁴); 6.61–8.09 (m, 18 arom. H) 54.90 (OMe); 63.70 (C ⁴); 80.30 (C ^{5:2} '); 194.50 (C=O); 197.50 (C=O)
5bg	OMe	Me	234	74	1755, 1720	1600	1595	2.29 (s, 3H, Me); 3.70 (s, 3H, OMe); 5.12 (s, 1H, H ⁴); 6.61–8.09 (m, 17 arom. H) 21.20 (Me); 54.90 (OMe); 63.70 (C ⁴); 80.30 (C ^{5,2}); 194.60 (C=O); 197.60 (C=O)
5cg	OMe	OMe	212	80	1755, 1720	1600	1596	3.71 (s, 3H, OMe); 3.76 (s, 3H, OMe); 5.22 (s, 1H, H ⁴); 6.74–7.50 (m, 17 arom. H) 54.90 (OMe); 55.00 (OMe); 63.70 (C ⁴); 80.40 (C ^{5.2} '); 194.70 (C=O); 197.80(C=O)
5dg	OMe	NO_2	250	71	1755, 1720	1590	1586	3.72 (s, 3H, OMe); 5.15 (s, 1H, H ⁴); 6.68–8.12 (m, 17 arom. H) 54.90 (OMe); 62.90 (C ⁴); 80.50 (C ^{5:2} '); 193.80 (C=O); 196.80 (C=O)
5ah	NO_2	Н	254	51	1750, 1715	1590	1585	5.24 (s, 1H, H ⁴); 6.93–8.03 (m, 18 arom. H) 62.80 (C ⁴); 79.70 (C ^{5:2'}); 194.10 (C=O); 196.80 (C=O)
5bh	NO_2	Me	258	50	1745, 1715	1600	1591	2.30 (s, 3H, Me); 5.20 (s, 1H, H ⁴); 6.91–8.04 (m, 17 arom. H) 21.20 (Me); 62.90 (C ⁴); 79.60 (C ^{5:2'}); 194.30 (C=O); 196.40 (C=O)
5ch	NO_2	OMe	196	50	1745, 1715	1600	1591	3.65 (s, 3H, OMe); 5.13 (s, 1H, H⁴); 6.67–8.04 (m, 17 arom. H) 55.40 (OMe); 63.10 (C⁴); 79.80 (C ^{5:2}); 194.30 (C=O); 196.90 (C=O)
5dh	NO_2	NO_2	>264	50	1750, 1715	1595	1591	5.24 (s, 1H, H ⁴); 6.69–8.14 (m, 17 arom. H) 62.10 (C ⁴); 79.90 (C ^{5:2'}); 193.40 (C=O); 196.00 (C=O)

Table 4	Analytical	data of the	spiro com	pounds 4 and
lable 4	Analytical		Spiro com	pounus 4 and

Compound	Molecular		Found/calc./%		Compound	Molecular		Found/calc. /%)
Compound	formula	С	Н	Ν	Compound	formula	С	Н	Ν
4ae	C ₂₃ H ₁₅ NO ₃	78.35	4.36	3.92	5ae	C ₂₉ H ₂₀ N ₂ O ₂	81.42	4.74	6.53
		78.17	4.28	3.96			81.29	4.70	6.54
4be	C ₂₄ H ₁₇ NO ₃	78.53	4.49	3.90	5be	C ₃₀ H ₂₂ N ₂ O ₂	81.37	5.02	6.33
		78.46	4.66	3.81			81.43	5.01	6.33
4ce	C ₂₄ H ₁₇ NO ₄	75.02	4.54	3.67	5ce	C ₃₀ H ₂₂ N ₂ O ₃	78.85	4.85	6.09
	2	75.19	4.47	3.65		00 22 2 0	78.59	4.84	6.11
4de	C ₂₃ H ₁₄ N ₂ O ₅	69.41	3.62	7.08	5de	$C_{29}H_{19}N_3O_4$	73.69	4.13	8.85
	20 14 2 0	69.34	3.54	7.03		20 10 0 4	73.56	4.04	8.87
4af	C ₂₄ H ₁₇ NO ₃	78.59	4.61	3.93	5af	C ₃₀ H ₂₂ N ₂ O ₂	81.62	5.13	6.45
	24 17 5	78.46	4.66	3.81		50 22 2 2	81.43	5.01	6.33
4bf	C25H10NO2	78.67	5.11	3.64	5bf	C21H24N2O2	81.42	5.24	6.28
	- 25 19 - 3	78.72	5.02	3.67		- 31 24 2 2	81.56	5.30	6.14
4cf	CarH10NO4	75.46	4.96	3.53	5cf	CatHatNaOa	78.97	5.22	5.87
	- 25 - 19 4	75.55	4.82	3.52		-31. 24. 2 - 3	78.79	5.12	5.93
4df		70.03	3.82	6.84	5df	CooHoa NoO4	73.63	4.39	8.71
	024.16.1205	69.90	3.91	6.79	••••	030.121.13.04	73.91	4.34	8.62
4ag	CarH1-NO4	75.07	4.53	3.70	5ag	CaoHaoNaOa	78.77	4.81	6.15
	024.17.104	75.19	4.47	3.65	j	030.122.1203	78.59	4.84	6.11
4ha	Cor HaoNO	75 29	4 91	3 51	5ha	Cor Hay No Oo	78 58	5.08	6.02
1.59	02511191004	75.55	4 82	3.52	0.09	031112410203	78.79	5 12	5.93
4ca	CHNO-	72.73	4.69	3 4 4	5cg	CarHarNaO.	76.32	4 99	5 73
tog	02511191005	72.63	4.63	3 39	oog	031112411204	76.21	4.00	5 73
4da	C. H. N.O.	67.14	3 79	6.63	5da	C. H. N.O.	71.81	1 33	8 29
fug	02411610206	67.29	3.76	6.54	Jug	03012110305	71.61	4.00	8 35
1ah	СНИО	69.24	3.66	6 9 2	Fab	СНИО	73.62	4.20	8 83
4011	C ₂₃ II ₁₄ IN ₂ O ₅	69.24	3.00	7.02	Jan	C ₂₉ 1 ₁₉ 3C ₄	73.62	4.00	0.03 8.87
1hh		60 71	2.04	6.03	5bb		73.50	4.04	0.07
4011	C ₂₄ H ₁₆ N ₂ O ₅	60.00	2.01	6 70	5011	C ₃₀ H ₂₁ N ₃ O ₄	73.02	4.51	0.03
1ab		67.07	3.91	0.79	Eab		73.9	4.34	0.02
4011	C ₂₄ Π ₁₆ Ν ₂ O ₆	67.07	3.70	0.02	5011	C ₃₀ Π ₂₁ N ₃ O ₅	71.00	4.20	0.29
1 db		62 55	3.70	0.54	Edh		71.00	4.20	0.30
4011	$C_{23}\Pi_{13}N_{3}O_{7}$	02.55	2.90	9.51	əan	C ₂₉ Π ₁₈ N ₄ O ₆	07.27	3.59	10.83
		62.31	2.96	9.48			67.18	3.50	10.81

Received 27 May 2003; accepted 3 December 2002 Paper 2/1412

References

- K. Ciamala, S. Kitane, J. Vebrel, and B. Laude, *Bull. Soc. Chim.* Belges, 1986, 95, 1083; S. Kitane, K. Ciamala, B. Laude, J. Vebrel, and E. Cerutti, *Tetrahedron*, 1985, 41, 3737; A. Kerbal, K. Ciamala, J. Vebrel, and B. Laude, *Bull. Soc. Chim. Belges*, 1988, 97, 149; A. Kerbal, K. Ciamala, J. Vebrel, B. Laude, and M.-F. Mercier, *Bull. Soc. Chim. Belges*, 1991, 100, 159.
- 2. G. Lo Vecchio, G. Grassi, F. Risitano, and F. Foti, *Tetrahedron Letters*, 1973, 3777.
- 3. G. Bianchi, R. Gandolfi, and C. De Micheli, *J. Chem. Res.* (*M*), 1981, 135.
- 4. E. Breitmaier and W. Voelter, Carbon-13 NMR Spectroscopy, *VCH*, Weinheim, 1987, pp. 80-84, 107 and 119.
- K. C. Liu, R. B. Shelton, and R. Howe, J. Org. Chem., 1986, 45, 3916.
- 6. R. Huisgen, M. Seidel, G. Wallbillich, and H. Knupfer, *Tetrahedron*, 1962, **17**, 3.
- 7. L. Geita and G. Vanags, J. Gen. Chem. USSR, 1956, 26, 3149.
- S. Boudriga, M. Askri, M. Rammah, and K. Monnier-Jobé, J. Chem. Research, preceding paper (paper 02/1386).